Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 269, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932719

RESUMO

BACKGROUND: Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS: We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS: ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS: This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.


Assuntos
Asma , Hipersensibilidade , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Alveolares , Animais , Humanos , Camundongos , Adiponectina , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Pyroglyphidae , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740532

RESUMO

3D chromatin organization plays an important role in transcription regulation and gene expression. The 3D genome is highly maintained by several architectural proteins, such as CTCF, Yin Yang 1, and cohesin complex. This structural organization brings regulatory DNA elements in close proximity to their target promoters. In this review, we discuss the 3D chromatin organization of super-enhancers and their relationship to phase-separated condensates. Super-enhancers are large clusters of DNA elements. They can physically contact with their target promoters by chromatin looping during transcription. Multiple transcription factors can bind to enhancer and promoter sequences and recruit a complex array of transcriptional co-activators and RNA polymerase II to effect transcriptional activation. Phase-separated condensates of transcription factors and transcriptional co-activators have been implicated in assembling the transcription machinery at particular enhancers. Cancer cells can hijack super-enhancers to drive oncogenic transcription to promote cell survival and proliferation. These dysregulated transcriptional programs can cause cancer cells to become highly dependent on transcriptional regulators, such as Mediator and BRD4. Moreover, the expression of oncogenes that are driven by super-enhancers is sensitive to transcriptional perturbation and often occurs in phase-separated condensates, supporting therapeutic rationales of targeting SE components, 3D genome organization, or dysregulated condensates in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...